Kinetic Addition of Nucleophiles to η^3 -Propargyl Rhenium Complexes Occurs at the Central Carbon to Produce Rhenacyclobutenes

Charles P. Casey,* John R. Nash, Chae S. Yi, Anthony D. Selmeczy, Steven Chung, Douglas R. Powell, and Randy K. Hayashi

Contribution from the Department of Chemistry, University of Wisconsin, Madison Wisconsin 53706 Received August 25, 1997

Abstract: Kinetic addition of nucleophiles occurs at the center carbon of η^3 -propargyl rhenium complexes to produce rhenacyclobutenes. Reaction of P(CH₃)₃ with C₅Me₅(CO)₂Re[η^3 -CH₂C≡C(CH₃)₃]⁺BF₄⁻ (**3a**) gave the metallacyclobutene C₅Me₅(CO)₂ReCH₂C(PMe₃)=CC(CH₃)₃⁺BF₄⁻ (**4a**), which was characterized by X-ray crystallography. Malonate and acetylide nucleophiles reacted with C₅Me₅(CO)₂Re[η^3 -CH₂C≡CCH₃]⁺PF₆⁻ (**3b**) to give metallacyclobutene complexes. Pyridine added to the central propargyl carbon of **3b** at low temperature to produce the metastable metallacyclobutene C₅Me₅(CO)₂ReCH₂C(NC₅H₅)=CCH₃⁺PF₆⁻ (**14b**) which rearranged to the η^2 -allene complex C₅Me₅(CO)₂Re[η^2 -H₂C≡C=C(NC₅H₅)CH₃]⁺PF₆⁻ (**15K**) at room temperature. 4-(Dimethylamino)pyridine (DMAP) added to the central carbon of the *tert*-butyl-substituted η^3 -propargyl complex **3a** below -38 °C to give the rhenacyclobutene complex C₅Me₅(CO)₂Re[η^2 -(CH₃)₃⁺BF₄⁻ (**22a**) which rearranged to the η^2 -alkyne complex C₅Me₅(CO)₂Re[η^2 -(CH₃)₃-CC=CH₂NC₅H₄NMe₂]⁺BF₄⁻ (**23**) at room temperature. Reaction of water with C₅Me₅(CO)₂Re[η^3 -CH₂C=CH]⁺BF₄⁻ (**3c**) gave the hydroxyallyl complex C₅Me₅(CO)₂Re[η^3 -CH₂C(OH)CH₂]⁺BF₄⁻ (**29**) by a process proposed to involve nucleophilic addition of water to the central propargyl carbon of **3c** followed by protonation of the metallacyclobutene intermediate.

Introduction

 η^3 -Propargyl transition metal complexes are the triple-bond analogues of the well-studied η^3 -allyl complexes,¹ which have found great utility in organic synthesis. η^3 -Propargyl metal complexes may be involved as transient intermediates in catalytic cycles,^{2,3} and have recently been detected and isolated. Since Werner's first report of the isolation of an η^3 -propargyl metal complex in 1985,⁴ there have been rapid developments in the synthesis and detection of η^3 -propargyl metal complexes.⁵

Syntheses of η^3 -propargyl metal complexes often parallel

those of η^3 -allyl metal complexes (Scheme 1). Synthetic methods include protonation of η^2 -propargyl alcohol complexes,⁶ halide abstraction from η^1 -propargyl or η^1 -allenyl metal halide complexes,⁷ reaction of metal halides with propargyl nucleophiles,⁸ reaction of propargyl ether complexes with Lewis acids,⁹ addition of a metal acetylide to a vinylidene,^{4,10} rearrangement of η^1 -homopropargyl metal complexes,¹¹ and oxidative addition of propargyl halides or tosylates to metal complexes.¹²

Our group has extended the η^2 -propargyl alcohol complex protonation methodology to the regiospecific synthesis of a variety of rhenium η^3 -propargyl complexes (Scheme 2).¹³ In addition, we have developed hydride abstraction from rhenium η^2 -alkyne complexes as a new route to η^3 -propargyl complexes.^{13,14} These methods have proven to be versatile and reliable ways of synthesizing η^3 -propargyl compounds.

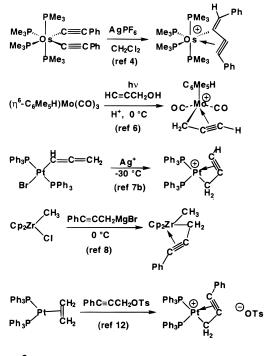
In a preliminary communication, we reported that nucleophiles attacked the center carbon atom of the η^3 -propargyl ligand.¹⁴ Here, we report the scope of these nucleophilic additions and more complete studies of their regiochemistry.

 ^{(1) (}a) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: Mill Valley, CA, 1994. Ch.
 (b) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; pp 175–182, 417–420, 881–919. (c) Harrington, P. J.; Oppolzer, W.; Krysan, D. J. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier: Oxford, U.K., 1995; Vol. 12, Chapter 8.2–8.5. (d) Trost, B. M.; Verhoeven, T. R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, U.K., 1982; Vol. 8, Chapter 57. (e) Tsuji, J. Tetrahedron 1986, 42, 4361. (f) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 1. (g) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.

^{(2) (}a) Keinan, E.; Bosch, E. J. Org. Chem. **1986**, 51, 4006. (b) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. **1991**, 113, 9604.

^{(3) (}a) Tsuji, J.; Mandai, T. Angew. Chem., Int. Ed. Engl. 1995, 34, 2589.
(b) Minami, I.; Yuhara, M.; Watanabe, H.; Tsuji, J. J. Organomet. Chem. 1987, 334, 225. (c) Tsuji, J.; Watanabe, H.; Minami, I.; Shimizu, I. J. Am. Chem. Soc. 1985, 107, 2196. (d) Shimizu, I.; Ohashi, Y.; Tsuji, J. Tetrahedron Lett. 1984, 25, 5183.

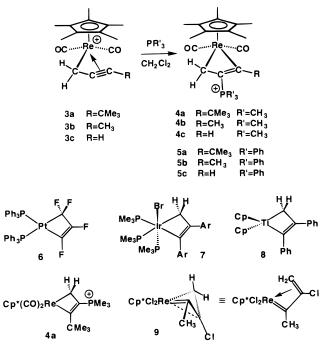
⁽⁴⁾ Gotzig, J.; Otto, H.; Werner, H. J. Organomet. Chem. 1985, 287, 247.


⁽⁵⁾ For reviews of η^3 -propargyl complexes, see: (a) Wojcicki, A. New. J. Chem. **1994**, 18, 61. (b) Doherty, S.; Corrigan, J. F.; Carty, A. J. Adv. Organomet. Chem. **1995**, 37, 39.

⁽⁶⁾ Krivykh, V. V.; Taits, E. S.; Petrovskii, P. V.; Struchkov, Y. T.; Yanovskii, A. I. Mendeleev Commun. 1991, 103.

^{(7) (}a) Blosser, P. W.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics **1993**, *12*, 1993. (b) Huang, T.-M.; Chen, J.-T.; Lee, G.-H.; Wang, Y. J. Am. Chem. Soc. **1993**, *115*, 1170. (c) Huang, T.-M.; Hsu, R.-H.; Yang, C.-S.; Chen, J.-T.; Lee, G.-H.; Wang, Y. Organometallics **1994**, *13*, 3, 3657. (d) Ogoshi, S.; Tsutsumi, K.; Kurosawa, H. J. Organometallics Chem. **1995**, *493*, C19. (e) Baize, M. W.; Blosser, P. W.; Plantevin, V.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics **1996**, *15*, 164.

⁽⁸⁾ Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. J. Am. Chem. Soc. 1993, 115, 2994.


⁽⁹⁾ Weng, W.; Arif, A. M.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 891.

Scheme 2

We have found that while kinetic addition of nucleophiles occurs at the center carbon of the η^3 -propargyl ligand to give rhenacyclobutene complexes, this addition is sometimes reversible and can be followed by addition at either of the other two metal-bound carbon atoms to give η^2 -allene or η^2 -alkyne complexes. In addition, we report that η^3 -allyl complexes can be obtained by protonation of the metallacyclobutenes derived from nucleophilic attack at the center carbon of the η^3 -propargyl complexes. Scheme 3

Results

Metallacyclobutenes from Addition of Nucleophiles to η^3 -Propargyl Complexes. The kinetic addition of phosphorus, carbon, and nitrogen nucleophiles to the central carbon of η^3 propargyl complexes gives high yields of rhenacyclobutene complexes. These complexes were completely characterized by spectroscopy and in one case by X-ray crystallography.

PMe₃ Addition to C₅Me₅(CO)₂Re[\eta^3-CH₂C≡CC(CH₃)₃]⁺ BF₄⁻ (3a). Excess PMe₃ was vacuum-transferred into a yellow solution of C₅Me₅(CO)₂Re[η^3 -CH₂C≡CC(CH₃)₃]⁺BF₄⁻ (**3a**) in CH₂Cl₂ at -78 °C, and the sample was examined immediately by ¹H NMR spectroscopy at -53 °C. The only species observed was the phosphine-substituted rhenacyclobutene complex C₅Me₅(CO)₂ReCH₂C(PMe₃)=CC(CH₃)₃⁺BF₄⁻ (**4a**) (Scheme 3). Evaporation of solvent and excess PMe₃ led to the isolation of **4a** as an air-stable yellow powder in quantitative yield. The structure of **4a** was established spectroscopically and confirmed by X-ray crystallography.

Spectral signatures for rhenacyclobutenes include (a) two lowfrequency ¹H NMR resonances for the diastereotopic ReCH₂ protons with a 11-13 Hz geminal coupling, (b) ¹³C NMR resonances for the ReCH₂ carbon at very low frequency (near δ -25), and (c) ¹³C NMR resonances for the ReC=C carbon near δ 170 and for the ReC=C carbon near δ 120 (Table 1). In the ¹H NMR spectrum of **4a**, the diastereotopic ReCH₂ protons were observed at δ 1.52 and 0.18, with a large 12 Hz geminal coupling. The $^{13}\mbox{C}$ NMR resonance of the $ReCH_2$ carbon appeared at very low frequency at δ –28.3. Similar NMR parameters have been observed for other metallacyclobutenes; Thorn assigned a ¹H NMR resonance at δ 1.16 and a ¹³C NMR resonance at δ -18.0 to the for IrCH₂ group in (PMe₃)₃-BrIrCH₂C(p-tolyl)=C(p-tolyl).¹⁵ The ¹³C NMR resonances of the alkene carbons of **4a** appeared at δ 178.3 ($J_{PC} = 6$ Hz) for ReC=CP and at δ 120.8 $(J_{PC} = 15 \text{ Hz})$ for ReC=CP. Two strong carbonyl bands were observed at 1994 and 1914 cm⁻¹ in the IR spectrum of 4a in THF.

^{(10) (}a) Alcock, N. W.; Hill, A. F.; Melling, R. P.; Thompsett, A. R. Organometallics 1993, 12, 641. (b) Hills, A.; Hughes, D. L.; Jimenez-Tenorio, M.; Leigh, G. J.; McGeary, C. A.; Rowley, A. T.; Bravo, M.; McKenna, C. E.; McKenna, M.-C. J. Chem. Soc., Chem. Commun. 1991, 522. (c) McMullen, A. K.; Selegue, J. P.; Wang, J.-G. Organometallics **1991**, *10*, 3421. (d) Field, L. D.; George, A. V.; Hambley, T. W. *Inorg. Chem.* **1990**, *29*, 4565. (e) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. 1991, 113, 9604. (f) Hsu, D. P.; Davis, W. M.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 10394. (g) Bianchini, C.; Bohanna, C.; Esteruelas, M. A.; Frediani, P.; Meli, A.; Oro, L. A.; Peruzzini, M. Organometallics 1992, 11, 3837. (h) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453. (i) Albertin, G.; Amendola, P.; Antoniutti, S.; Ianelli, S.; Pelizzi, G.; Bordignon, E. Organometallics 1991, 10, 2876. (j) Wakatsuki, Y.; Yamazaki, H.; Maruyama, Y.; Shimizu, I. J. Chem. Soc., Chem. Commun. 1991, 261. (k) Hughes, D. L.; Jimenez-Tenorio, M.; Leigh, G. J.; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 3151. (1) Jia, G.; Rheingold, A. L.; Meek, D. W. Organometallics 1989, 8, 1378

⁽¹¹⁾ Stang, P. J.; Crittell, C. M.; Arif, A. M. Organometallics **1993**, *12*, 4799.

⁽¹²⁾ Baize, M. W.; Blosser, P. W.; Plantevin, V.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics **1996**, *15*, 164.

⁽¹³⁾ Casey, C. P.; Selmeczy, A. D.; Nash, J. R.; Yi, C. S.; Powell, D. R.; Hayashi, R. K. J. Am. Chem. Soc. **1996**, *118*, 6698.

⁽¹⁴⁾ Casey, C. P.; Yi, C. S. J. Am. Chem. Soc. 1992, 114, 6597.

⁽¹⁵⁾ Calabrese, J. C.; Roe, D. C.; Thorn, D. L.; Tulip, T. H. Organometallics 1984, 3, 1223.

Table 1. Characteristic Spectroscopic Data of Rhenacyclobuten

	¹ H NMR (δ)			¹³ C NMR (δ)		
compd	$CH_2C=C$	other	¹³ CH ₂ C=C	$CH_2^{13}C=C$	$CH_2C=^{13}C$	IR $\nu_{\rm CO}$ (cm ⁻¹)
4a	$1.52, 0.18^{b}$		-28.3^{i}	120.8	178.3	1994, 1914
	$J_{\rm gem} = 12 {\rm Hz}$			$J_{\rm PC} = 15 {\rm Hz}$	$J_{\rm PC} = 6 {\rm Hz}$	
4b	$1.45, 0.30^{c}$		-31.7^{j}	128.0	157.7	1991, 1915
	$J_{\rm gem} = 11.5 \ {\rm Hz}$			$J_{\rm PC} = 33.2 \; {\rm Hz}$		
4 c	$1.36, 0.09^{b}$	=CH 8.18	-27.0^{i}	138.0	142.8	1994, 1914
	$J_{\text{gem}} = 13 \text{ Hz}$	$J_{\rm PH} = 12 {\rm Hz}$		$J_{\rm PC} = 38 \text{ Hz}$		
5a	$1.51, 0.30^{b}$		-27.2^{i}	115.9	178.0	1993, 1914
	$J_{\text{gem}} = 13 \text{ Hz}$			$J_{\rm PC} = 15 \; {\rm Hz}$	$J_{\rm PC} = 5 {\rm Hz}$	
5b	$1.52, 0.17^d$		-26.8^{i}	120.4	168.9	1993, 1919
_	$J_{\rm gem} = 12 {\rm Hz}$			$J_{\rm PC} = 20 {\rm Hz}$		
5c	$1.86, 0.81^{e}$	=CH 8.32	-27.3^{j}	133.9	154.7	1994, 1914
4.63	$J_{\text{gem}} = 12 \text{ Hz}$	$J_{\rm HP} = 11 \; {\rm Hz}$	a ch	$J_{\rm PC} = 19 {\rm Hz}$		1000 100
10b	$1.54, 0.28^{b}$		-30.0^{k}	131.0	179.1	1999, 1926
	$J_{\rm gem} = 12 {\rm Hz}$		21.7	$J_{\rm PC} = 14 {\rm Hz}$	150.0	1001 1005
11b	$1.37, 0.20^{g}$		-21.7	128.0	150.2	1981, 1905
101	$J_{\rm gem} = 11 {\rm Hz}$		25.71	110.0	140.2	1070 1002
12b	$2.00, 0.50^{f}$		-25.7^{l}	119.0	140.3	1979, 1903
121	$J_{\text{gem}} = 11 \text{ Hz}$					
13b	$1.79, 0.66^{b}$					
14b	$J_{\text{gem}} = 12 \text{ Hz}$ obscd, 0.62^d					
140						
16b	$J_{\text{gem}} = 12 \text{ Hz}$ obscd, 0.61^d					
100	$J_{\text{gem}} = 13 \text{ Hz}$					
18c	$J_{\text{gem}} = 13 \Pi Z$ 1.72, 0.58 ^h					
100	$J_{\rm gem} = 12 {\rm Hz}$	=CH7.41	-26.0^{m}	111.3	185.7	
22a	$J_{\text{gem}} = 12.112$ 1.80, 0.34 ^h	011 /.41	20.0	111.5	105.7	
<i>22</i> 0	$J_{\rm gem} = 12 {\rm Hz}$		-17.7^{m}	105.6	140.9	
	$J_{\text{gem}} = 12112$		1/./	105.0	140.2	

^{*a* ¹}H and ¹³C NMR resonances were referenced to solvent peaks. IR spectra were recorded in THF and displayed strong bands of approximately equal intensity. ^{*b*} At 300 MHz in CD₂Cl₂. ^{*c*} At 200 MHz in CD₂Cl₂. ^{*d*} At 500 MHz in CD₂Cl₂. ^{*e*} At 500 MHz in acetone-*d*₆. ^{*f*} At 200 MHz in THF-*d*₈. ^{*s*} At 200 MHz in CD₂Cl₂. ^{*i*} At 125 MHz in CD₂Cl₂. ^{*j*} At 125 MHz in CD₂Cl₂. ^{*k*} At 75 MHz in acetone-*d*₆. ^{*l*} At 125 MHz in THF-*d*₈. ^{*m*} At 90 MHz in CD₂Cl₂.

Table 2. Selected Bond Lengths (Å) and Bond Angles (deg) for $C_5Me_5(CO)_2ReCH_2C(PMe_3)=CC(CH_3)_3^+BF_4^-$ (**4A**)

Bond Lengths (Å)						
Re-C(1)	1.92(1)	C(1) - C(2)	1.52(1)			
Re-C(3)	2.19(1)	C(3) - C(7)	1.51 (2)			
C(2) = C(3)	1.33 (1)	C(2) - P(1)	1.79(1)			
Bond Angles (deg)						
C(1)—Re— $C(3)$	61.2 (3)	Re-C(3)-C(2)	93.3 (6)			
Re-C(1)-C(2)	100(1)	C(2) - C(3) - C(7)	129 (1)			
C(1) - C(2) - C(3)	104 (1)	C(11)—Re— $C(12)$	81.0 (4)			

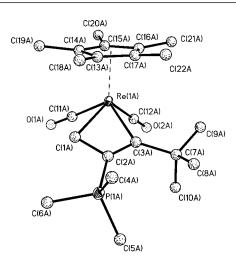
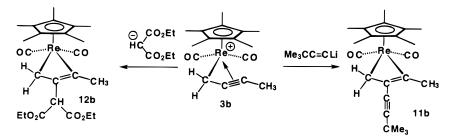


Figure 1. X-ray Structure of $C_5Me_5(CO)_2ReCH_2C(PMe_3)=CC-(CH_3)_3^+BF_4^-$ (4a).

The metallacyclobutene formulation of **4a** was confirmed by X-ray crystallography (Table 2, Figure 1). The metallacycle atoms Re-C(1)-C(2)-C(3) are nearly coplanar. The mean

 Table 3.
 Structural Comparison of Bond Lengths (Å) for Metallacyclobutenes


	4 a	6	7	ρ
	4a	0	/	8
M-C(1)	1.92(1)	2.04(1)	2.13(1)	2.10(1)
M-C(3)	2.19(1)	2.30(1)	2.17(1)	2.12(1)
C(1) - C(2)	1.52(1)	1.47(1)	1.53(1)	1.54(1)
C(2) = C(3)	1.33(1)	1.35(1)	1.34(1)	1.34(1)

deviation from planarity is 0.039 Å, and Re is only 0.27 Å out of the plane defined by the three carbons. The ring is slightly puckered with the plane of the three carbons tilted 8.1° toward the Cp* ring relative to the C(1)–Re–C(2) plane. The 104 (1)° C–C=C angle of the metallacyclobutene ring of **4a** is similar to those observed for other third-row metallacycles: 104.7 (7)° for (PPh₃)₂Pt(C₃F₄) (**6**)¹⁶ and 106.1 (5)° for (PMe₃)₃-(Br)IrCH₂C(*p*-tolyl)=C(*p*-tolyl) (**7**).¹⁵ The analogous angle in Tebbe's first-row metallacycle (C₅H₅)₂TiCH₂C(Ph)=C(Ph) (**8**)¹⁷ is 112.8 (6)°. Bond length comparisons of **4a** and other metallacyclobutenes show remarkable consistency (Table 3). All of the metallacycles have a shorter M–C distance to the formally sp² carbon than to the sp³ carbon.

Metallacyclobutenes and η^3 -vinylcarbene complexes are valence isomers. The η^3 -vinylcarbene provides two more valence electrons to the metal center than a metallacyclobutene. Compared with nearly planar metallacyclobutenes, η^3 -vinylcarbene complexes have geometries more similar to π -allyl complexes with the metal center strongly interacting with all

^{(16) (}a) Hemond, R. C.; Hughes, R. P.; Robinson, D. J.; Rheingold, A. L. *Organometallics* 1988, 7, 2239. (b) Hughes, R. P.; King, M. E.; Robinson, D. J.; Spotts, J. M. *J. Am. Chem. Soc.* 1989, *111*, 8919.

^{(17) (}a) Tebbe, F. N.; Harlow, R. L. J. Am. Chem. Soc. 1980, 102, 6149.
(b) McKinney, R. J.; Tulip, T. H.; Thorn, D. L.; Coolbaugh, T. S.; Tebbe, F. N. J. Am. Chem. Soc. 1981, 103, 5584.

three carbon centers. Several η^3 -vinylcarbene complexes have been characterized by X-ray crystallography,^{18,19} including the rhenium complex C₅Me₅Cl₂Re[η^3 -C(CH₃)CCl=CH₂] (**9**),²⁰ which can be compared directly to **4a**. In contrast to the near planarity of **4a**, rhenium lies 1.7 Å above the plane of the carbons of the η^3 -vinylcarbene ligand of **9** and all three carbons are bonded to Re. In contrast to the low-frequency ¹H NMR resonances and large geminal coupling observed for the ReCH₂ protons of **4a**, the diastereotopic protons of **9** appear at δ 4.31 and 3.27, with a small 3 Hz geminal coupling, consistent with sp² hybridization. A short Re=C distance of 1.97 Å in **9** and a δ 265 ¹³C NMR resonance provide support for a vinylcarbene formulation.

Addition of PMe₃ to the methyl-substituted η^3 -propargyl complex $C_5Me_5(CO)_2Re[\eta^3-CH_2C=CCH_3]^+BF_4^-$ (3b) and to the unsubstituted η^3 -propargyl complex C₅Me₅(CO)₂Re[η^3 - $CH_2C \equiv CH]^+BF_4^-$ (3c) also proceeded by phosphine attack at the central propargyl carbon and led to the formation of rhenacyclobutenes. For example, when excess PMe3 was added to a yellow solution of **3b** in CH₂Cl₂, a white precipitate formed gradually over 30 min at room temperature. The rhenacyclobutene $C_5Me_5(CO)_2ReCH_2C(PMe_3)=CCH_3^+BF_4^-$ (4b) was isolated as a white powder in 72% yield. The low-frequency ¹H NMR resonances of the diastereotopic ReCH₂ protons at δ 1.45 and 0.3 ($J_{\text{gem}} = 12 \text{ Hz}$) and the low-frequency ¹³C NMR resonance of the ReCH₂ carbon at δ -31.7 helped to establish the presence of the metallacyclobutene substructure of 4b. Similarly, addition of PMe₃ to C₅Me₅(CO)₂Re[η^3 -CH₂C=CH]⁺- BF_4^- (3c) gave a 93% yield of $C_5Me_5(CO)_2ReCH_2C(PMe_3) =$ $CH^+BF_4^-$ (4c), which was characterized spectroscopically (Table 1).

PPh₃ also added to the central carbon of η^3 -propargyl complexes **3a**-**c** to produce rhenacyclobutenes. When solid PPh₃ was added to a yellow CD₂Cl₂ solution of **3a** at room temperature, ¹H NMR spectroscopy revealed the formation of a single new product C₅Me₅(CO)₂ReCH₂C(PPh₃)=CC-(CH₃)₃+BF₄⁻ (**5a**) with the resonances characteristic of a rhenacyclobutene (Table 1). Complex **5a** was isolated as a light yellow powder in 91% yield. Similarly, addition of PPh₃ to **3b** and **3c** led to the isolation of C₅Me₅(CO)₂ReCH₂C(PPh₃)=CCH₃+BF₄⁻ (**5b**) in 46% yield and C₅Me₅(CO)₂ReCH₂-C(PPh₃)=CCH⁺BF₄⁻ (**5c**) in 91% yield.

Trimethyl phosphite added to the central carbon of η^3 propargyl complex **3b** to give the rhenacyclobutene complex C₅Me₅(CO)₂ReCH₂C[P(OMe)₃]=CCH₃+BF₄⁻ (**10b**) as a yellow solid in 55% yield. The ReCH₂ unit of **10b** gave rise to two doublet of quartet resonances ($J_{\text{gem}} = 12 \text{ Hz}$, ${}^5J = 2 \text{ Hz}$) at δ 1.54 and 0.28 in the ¹H NMR spectrum and to a low-frequency resonance in the ${}^{13}C{}^{1}H$ NMR spectrum at δ -30.0 (d, $J_{\text{PC}} = 9 \text{ Hz}$).

Rhenacyclobutenes from Reaction of η^3 -Propargyl Complexes with Carbon Nucleophiles. The methyl-substituted η^3 propargyl complex 3b reacted with carbon nucleophiles to form metallacyclobutene complexes.²¹ When LiC= $CC(CH_3)_3$ was added to a yellow THF solution of $C_5Me_5(CO)_2Re[\eta^3 CH_2C \equiv CCH_3]^+ PF_6^-$ (**3b**), an orange-red solution was produced in less than 10 min. Chromatography led to the isolation of the neutral rhenacyclobutene $C_5Me_5(CO)_2ReCH_2C[C=CC-$ (CH₃)₃]=CCH₃ (**11b**) in 47% yield as a dark orange-red liquid (Scheme 4). The rhenacyclobutene structure was established by the observation of ¹H NMR resonances for the diastereotopic ReCH₂ protons of **11b** at δ 1.37 and 0.20 ($J_{gem} = 11$ Hz) and a low-frequency ¹³C NMR resonance at δ –21.7 (Table 1). Similarly, addition of solid NaCH(CO₂Et)₂ to a THF solution of **3b** led to the isolation of C₅Me₅(CO)₂ReCH₂C[CH(CO₂-Et)₂]=CCH₃ (12b) in 56% yield as a red-orange oil. In addition to characteristic resonances for a rhenacyclobutene (Table 1), the ¹³C NMR spectrum of **12b** exhibited resonances for two diastereotopic Et groups. Complexes 11b and 12b were thermally less stable than the phosphine-substituted metallacyclobutenes and decomposed in solution at room temperature over several days to give predominantly η^3 -allyl complexes. (The reactivity of rhenacyclobutenes toward acid will be described below.)

Addition of excess *tert*-butyl isocyanide to a CD₂Cl₂ solution of **3b** at -78 °C led to the immediate formation of a bright yellow solution whose ¹H NMR spectrum at -55 °C was consistent with formation of the rhenacyclobutene C₅Me₅-(CO)₂ReH₂CC(C≡NCMe₃)=CCH₃⁺PF₆⁻ (**13b**). In particular, two doublets of quartets were observed at δ 1.76 and 0.63 (J_{gem} = 11 Hz, ⁵J = 2 Hz). When the solution was warmed above 5 °C, further reaction with excess isocyanide ensued, leading to an unidentified mixture of products. Species **13b** was isolated as an orange solid by evaporation of volatile material under high vacuum at 0 °C.

Addition of malonates and acetylides to the *tert*-butylsubstituted and unsubstituted η^3 -propargyl complexes **3a** and **3c** failed to give observable rhenacyclobutenes under conditions that worked adequately for the methyl-substituted η^3 -propargyl complex **3b**. The unsubstituted η^3 -propargyl complex **3c** decomposed to uncharacterizable products upon warming solutions containing either sodium diethyl malonate or LiC=CC-(CH₃)₃. Due to its thermal instability above -20 °C, **3c** apparently decomposes before nucleophilic attack occurs. The *tert*-butyl-substituted η^3 -propargyl complex **3a** is not only thermally sensitive but also failed to react with these carbon nucleophiles to produce rhenacyclobutenes. ¹H NMR spectra

^{(18) (}a) Mayr, A.; Asaro, M. F.; Glines, T. J. J. Am. Chem. Soc. **1987**, 109, 2215. (b) Garrett, K. E.; Sheridan, J. B.; Pourreau, D. B.; Feng, W. C.; Geoffroy, G. L.; Staley, D. L.; Rheingold, A. L. J. Am. Chem. Soc. **1989**, 111, 8383.

^{(19) (}a) Klimes, J.; Weiss, E. Angew. Chem., Int. Ed. Engl. 1982, 21, 205. (b) Nakatsu, K.; Mitsudo, T.; Nakanishi, H.; Watanabe, Y.; Takegami, Y. Chem. Lett. 1977, 1447.

^{(20) (}a) Herrmann, W. A.; Fischer, R. A.; Herdtweck, E. Angew. Chem., Int. Ed. Engl. **1987**, 26, 1263. (b) Fischer, R. A.; Fischer, R. W.; Herrmann, W. A.; Herdtweck, E. Chem. Ber. **1989**, 122, 2035.

⁽²¹⁾ Extension of this methodology to the *tert*-butyl-substituted and the unsubstituted propargyl complexes 3a and 3c was unsuccessful.

Scheme 5

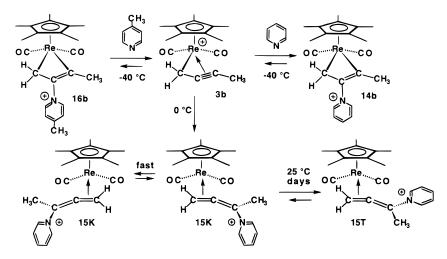


Table 4. Characteristic Spectroscopic Data of Rhenium Allene Complexes^a

	¹ H NMR (δ)		13 C NMR (δ)			
compd	$H_2C=C=CRR'$	other	$H_2^{13}C=C=CRR'$	$H_2C=^{13}C=CRR'$	$H_2C=C=^{13}CRR'$	IR $\nu_{\rm CO}$ (cm ⁻¹)
15K	$1.94, 1.19^{b}$	R = Me 2.59	-1.7^{e}	148.1	132.0	1983, 1911
15T	$J_{\text{gem}} = 8 \text{ Hz}$ 1.91, 1.19 ^b $J_{\text{gem}} = 8 \text{ Hz}$	R = Me 2.73	-2.9^{e}	153.8	125.7	1997, 1914
17	1.5 $(br)^{b}$	R = Me 2.59				
19	$2.16, 1.44^{c}$	R = Me 2.23	3.4^{f}	147.0	123.0	1979, 1909
20	$J_{\rm gem} = 9 \; {\rm Hz}$ 1.69, 0.89 ^c	R = Me 2.37	0.0^g	142.2	99.0	1975, 1906
20	$J_{\rm gem} = 7 \text{Hz}$	$\mathbf{K} = \mathbf{Me} \ 2.57$	0.0°	142.2	99.0	1975, 1900
21	$1.74, 0.95^{\circ}$ $J_{gem} = 8 \text{ Hz}$	R = Me 2.25	-1.0^{g}	140.6	111.9	

^{*a* 1}H and ¹³C NMR resonances were referenced to solvent peaks and observed at ambient temperature unless otherwise noted. IR spectra were recorded in THF, and displayed strong bands of approximately equal intensity. ^{*b*} At 500 MHz in CD₂Cl₂. ^{*c*} At 500 MHz in CD₂Cl₂, -40 °C. ^{*d*} At 300 MHz in CD₂Cl₂. ^{*e*} At 125 MHz in CD₂Cl₂, -60 °C. ^{*f*} At 125 MHz in CD₂Cl₂. ^{*g*} At 75 MHz in CD₂Cl₂.

of the reaction mixtures showed no reaction between **3a** and the nucleophile over a day at room temperature. Perhaps steric hindrance from the *tert*-butyl group of **3a** prevents nucleophilic addition.

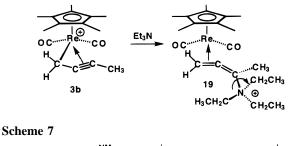
Kinetic Formation of Metallacyclobutenes from Addition of Nitrogen Nucleophiles to η^3 -Propargyl Complexes. At low temperature, nitrogen nucleophiles kinetically add to the central carbon of η^3 -propargyl complexes to give rhenacyclobutenes. Upon warming, the rhenacyclobutenes dissociated the nitrogen nucleophile which then re-added to the η^3 -propargyl complex at one of the terminal sites to give either an allene or an alkyne complex.

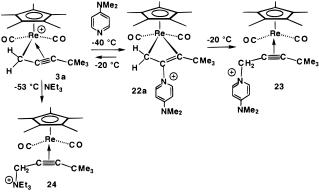
Addition of excess pyridine to a CD₂Cl₂ solution of **3b** at -78 °C followed by warming to -40 °C resulted in the rapid formation of the metallacyclobutene complex C₅Me₅(CO)₂-ReCH₂C(NC₅H₅)=CCH₃+PF₆⁻ (**14b**) (Scheme 5). The ¹H NMR spectrum of **14b** at -40 °C provided evidence of the formation of a metallacyclobutene. Resonances were observed at δ 2.29 (br s, CH₃), 1.97 (s, C₅Me₅), and 0.62 (dq, shoulders not resolved, J = 12, 2 Hz, Re–CHH); the other Re–CHH resonance was not observed and is presumably buried under the C₅Me₅ resonance.

Conversion of a Metallacyclobutene to an Allene Complex. When the CH₂Cl₂ solution of **14b** was warmed to room temperature, formation of a > 10:1 ratio of η^2 -allene complexes C₅Me₅(CO)₂Re[η^2 -H₂C=C=C(NC₅H₅)CH₃]⁺PF₆⁻ (**15K** and **15T**) was observed (Scheme 5). Addition of ether brought about the precipitation of the allene complexes which were isolated in 61% yield. The mass spectrum (LSIMS) showed a peak at 510, consistent with addition of pyridine to the π -propargyl complex **3b**. The ¹H NMR spectrum of **15K** at -40 °C had resonances for inequivalent terminal allene protons at δ 1.94 and 1.18 (dq, shoulders not resolved, J = 8, 2 Hz, 1H each) and a triplet CH₃ resonance (J = 2 Hz) at δ 2.64 in addition to resonances for C₅Me₅ and bound pyridine. At room temperature, the resonances for the inequivalent terminal allene protons coalesced to a broad feature at δ 1.6. This coalescence is due to interchange of the environments of the CH₂=C=C protons by rotation about the Re–allene bond. In the coupled ¹³C NMR spectrum, the ¹³CH₂=C=C resonance at δ -1.70 (t, J = 164 Hz), the CH₂=I³C=C resonance at δ 148.8 (s), and the CH₂=C=¹³C resonance at 133.2 (s). These resonances are characteristic of allene complexes (Table 4).

Slow equilibration of the kinetically formed >10:1 mixture of allene complexes **15K:15T** occurred over several weeks ($t_{1/2} \approx 14$ d) to give a final 1:9 ratio of **15K:15T**. The spectroscopic properties of thermodynamically favored complex **15T** were very similar to those of the kinetically favored isomer **15K**. The low-temperature (-60 °C) ¹H NMR spectrum of **15T** showed the decoalescence of two methylene protons at δ 1.91 and 1.18 (br d, J = 8 Hz). The ¹³C{¹H} NMR spectrum of **15T** exhibited a resonance at δ -2.9, assigned to the ¹³CH₂=C=C carbon.

To determine whether the conversion of the metallacycle **14b** to allene complex **15K** occurs via an intra- or intermolecular mechanism, the conversion of the pyridine substituted metallacycle **14b** was carried out in the presence of 4-picoline. Excess 4-picoline was added to a CD_2Cl_2 solution of **14b** at


-78 °C. Inspection of the ¹H NMR spectrum at -40 °C showed the complete disappearance of **14b** and formation of a new material (**16b**) having resonances for a bound 4-picoline ligand and a new ReCHH resonance at δ 0.61 (br d, $J_{gem} = 13$ Hz) characteristic of a metallacyclobutene. Apparently, loss of pyridine is rapid and reversible at -40 °C. This provides a dissociative mechanism for exchange of 4-picoline for pyridine at the metallacyclobutene stage. When the solution was warmed to room temperature, a complicated mixture of η^2 -allenyl products incorporating both pyridine and 4-picoline was observed. Resonances attributed to one isomer of the 4-picoline η^2 -allene adduct C₅Me₅(CO)₂Re[η^2 -H₂C=C=C(p-CH₃-C₅H₅N)-CH₃]⁺PF₆⁻ (**17**) were seen.


To determine whether the interconversion of allene isomers **15K** and **15T** occurs intramolecularly or by a dissociative mechanism through η^3 -propargyl complex **3b**, the equilibration of an initial 2:1 mixture of **15K:15T** was carried out in the presence of a 3-fold excess of 4-picoline. After 24 h at room temperature, no formation of 4-picoline η^2 -allene adduct **17** was seen by ¹H NMR spectroscopy and isomerization to a 1:2 mixture of **15K:15T** had taken place. After 5 days, only **15T** was seen and no 4-picoline adducts were observable. This experiment establishes that conversion of **15K** to **15T** is intramolecular and that formation of the allene complexes from η^3 -propargyl complex **14b** is irreversible.

The similarity of the spectra of 15K and 15T requires that these isomers differ only in the relative stereochemistry at the allene terminus. We cannot assign the absolute stereochemistry of the two allene complexes. However, examination of molecular models indicates that attack on an η^3 -propargyl complex should occur preferentially from the side opposite the metal. It is more difficult to assess which isomer is more thermodynamically stable, but since the C=C=C angle in allene complexes is about 140° ,²² the isomer with pyridine syn to rhenium may be more stable. The stereochemistry of the kinetic isomer is arbitrarily drawn as having pyridine anti to rhenium. The intramolecular rearrangement of allene complex 15K to 15T probably occurs by migration of rhenium from the lesssubstituted allene π -bond to the more-substituted allene π -bond and then back to the opposite enantioface of the less-substituted allene π -bond.²³

Pyridine added to the central carbon of the unsubstituted η^3 propargyl complex **3c** below -43 °C to give the metallacyclobutene C₅Me₅(CO)₂ReCH₂C(NC₅H₅)=CH⁺PF₆⁻ (**18c**) as the only observable product (Table 1). This metallacycle decomposed when warmed to -20 °C to give a mixture of more than 10 C₅Me₅-containing products.

The reaction of NEt₃ with η^3 -propargyl complex **3b** at room temperature led to the isolation of a single isomer of the allene complex C₅Me₅(CO)₂Re[η^2 -H₂C=C=C(NEt₃)CH₃]⁺PF₆⁻ (**19**) as a yellow powder in 60% yield (Scheme 6). A key spectral feature that led to the assignment of the allenyl structure of **19** was the appearance of a low-frequency ¹³C NMR resonance at δ 3.4 for the ¹³CH₂=C=C carbon. At -47 °C, rotation of the allene ligand was frozen out and separate resonances were seen for the two CH₂=C=C protons at δ 2.16 and 1.44 (each a broad doublet, $J_{gem} = 9$ Hz, 1H). Surprisingly, the NEt₃ resonances Scheme 6

broadened at -47 °C, suggesting the possibility of a fluxional process involving inequivalent Et groups. Further cooling of the solution to -80 °C resulted in the decoalescence of the NEt₃ peaks into three distinct CH₃ peaks between δ 0.92 and 1.27 (each a broad triplet) and six diastereotopic CH₂ resonances between δ 3.21 and 3.65 (all multiplets). Remarkably, rotation about the C–NR₃ bond has been frozen out at -80 °C.

The solution of **19** was monitored over several weeks at room temperature but no evidence for a second allene isomer (as seen for the pyridine case) was observed. We do not know whether the NEt₃ group is syn or anti to rhenium, but the observation of a slow NEt₃ rotation suggests that the NEt₃ group is in a very crowded environment. The NEt₃ group is arbitrarily drawn anti to rhenium.

Halide attack on the methyl-substituted η^3 -propargyl complex **3b** also led to the formation of allene complexes. Addition of Ph₄PBr to a CD₂Cl₂ solution of **3b** led to the isolation of C₅-Me₅(CO)₂Re[η^2 -H₂C=C=C(Br)CH₃] (**20**) in 60% yield. Similarly, reaction of Ph₄PCl with **3b** gave C₅Me₅(CO)₂Re[η^2 -H₂C=C=C(Cl)CH₃] (**21**) in 58% yield. The ¹H and ¹³C NMR spectra of **20** and **21** support their formulation as allene complexes (Table 4).

Conversion of a Metallacyclobutene to an Alkyne Complex. The *tert*-butyl-substituted η^3 -propargyl complex **3a** was attacked by 4-(dimethylamino)pyridine (DMAP) at the central propargyl carbon below -38 °C to give the rhenacyclobutene complex C₅Me₅(CO)₂ReCH₂C(NC₅H₄NMe₂)=CC(CH₃)₃⁺BF₄⁻ (**22a**). This compound was characterized by its ¹H and ¹³C NMR spectra (Table 1).

When warmed to -20 °C, **22a** rearranged to give the alkyne complex C₅Me₅(CO)₂Re[η^2 -(CH₃)₃CC=CH₂NC₅H₄NMe₂]⁺-BF₄⁻ (**23**) which was isolated as a stable yellow solid in 96% yield (Scheme 7). In the ¹H NMR spectrum of **23**, the diastereotopic propargyl protons of the CH₂N group appeared as two doublets at δ 5.45 and 5.09 with a geminal coupling of 16 Hz. Rotation about the rhenium–alkyne bond of this sterically crowded alkyne is evidently slow at room temperature. The observation of two carbonyl resonances at δ 209.6 and 208.3 in the ¹³C{¹H} NMR spectrum provide further evidence for slow rotation about the rhenium–alkyne bond. The ¹³C

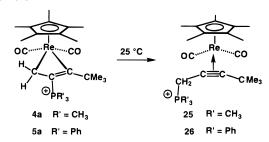
^{(22) (}a) Foxman, B. M. J. Chem. Soc., Chem. Commun. 1975, 221. (b)
Yasuoka, N.; Morita, M.; Kai, Y.; Kasai, N. J. Organomet. Chem. 1975, 90, 111. (c)
Werner, H.; Schwab, P.; Mahr, N.; Wolf, J. Chem. Ber. 1992, 125, 2641. (d)
Werner, H.; Schneider, D.; Schulz, M. J. Organomet. Chem. 1993, 451, 175. (e)
Binger, P.; Langhauser, F.; Wedemann, P.; Gabor, B.; Mynott, R.; Krüger, C. Chem. Ber. 1994, 127, 39.

^{(23) (}a) Ben-Shoshan, R.; Pettit, R. J. Am. Chem. Soc. 1967, 89, 2231.
(b) Foxman, B.; Marten, D.; Rosan, A.; Raghu, S.; Rosenblum, M. J. Am. Chem. Soc. 1977, 99, 2160.

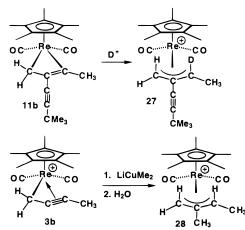
Table 5. Characteristic Spectroscopic Data of Rhenium Alkyne Complexes^a

	¹ H NM	IR (δ)		¹³ C NMR (δ)	
compd	$CH_2C\equiv C$	$^{13}CH_2C\equiv C$	$CH_2^{13}C\equiv C$	$CH_2C\equiv^{13}C$	IR $\nu_{\rm CO}(\rm cm^{-1})$
23	5.45, 5.09 ^c $J_{gem} = 16 \text{ Hz}$	66.0 ^f	71.6	101.3	1950, 1867
24	$4.48, 4.24^{b}$ $J_{gem} = 16 \text{ Hz}$				1949, 1865
25	$3.97, 3.58^b$ $J_{gem} = 16 \text{ Hz}$	25.2^{f} $J_{PC} = 51 \text{ Hz}$	57.8 $J_{PC} = 12 \text{ Hz}$	97.0	1951, 1869
26	4.03, 3.71 ^b	27.1^{f}	61.3	96.5	1951, 1868
$(C_5Me_5)(CO)_2Re[\eta^2-(CH_3)_3CC\equiv CCH_2OH]$	$J_{\text{gem}} = 16 \text{ Hz}$ 4.72, 4.60 ^c $J_{\text{gem}} = 15 \text{ Hz}$	$J_{\rm PC} = 50 \text{ Hz}$ 59.0 ^f	$J_{\rm PC} = 9 \text{ Hz}$ 77.0	96.3	1945, 1863
$(C_5Me_5)(CO)_2Re(\eta^2-CH_3C\equiv CCH_2OH)^{13}$	$4.69, 4.41^d$ $J_{gem} = 10 \text{ Hz}$	59.2 ^g	75.9	76.5	1950, 1862
$(C_5Me_5)(CO)_2Re(\eta^2-HC\equiv CCH_2OH)^{13}$	$4.57, \text{ br s}^{e}$	59.1 ^g	89.4	64.9	1951, 1867

^{*a* 1}H and ¹³C NMR resonances were referenced to solvent peaks. IR spectra were recorded in THF and displayed strong bands of approximately equal intensity. ^{*b*} At 360 MHz in CD₂Cl₂. ^{*c*} At 300 MHz in CD₂Cl₂. ^{*d*} At 300 MHz in C₆D₆. ^{*e*} At 200 MHz in in C₆D₆. ^{*f*} At 90 MHz in CD₂Cl₂.^{*g*} At 125 MHz in C₆D₆.


NMR resonances of the propargyl unit provide a distinctive spectral signature for this class of compounds (Table 5) that allows them to be readily distinguished from metallacy-clobutenes and allene complexes. The two alkyne carbons appeared at δ 101.3 and 71.6 (C=*C*), and the CH₂N resonance appeared at δ 66.0.

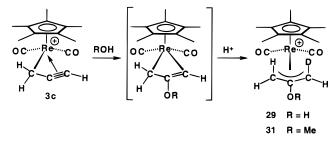
The conversion of metallacyclobutene **22a** to alkyne complex **23** can be explained by dissociation of DMAP from **22a** to regenerate η^3 -propargyl complex **3a**, followed by re-addition of DMAP to the terminal CH₂ carbon of the propargyl complex to produce the alkyne complex **23**. Apparently, the bulky *tert*-butyl substituent prevents attack at the C=C-CMe₃ terminal carbon which would have produced a sterically crowded allene complex.²⁴


The addition of NEt₃ to *tert*-butyl-substituted η^3 -propargyl complex **3a** at -53 °C led directly to the alkyne complex C₅-Me₅(CO)₂Re[η^2 -(CH₃)₃CC=CCH₂NEt₃]⁺BF₄⁻ (**24**) which was stable at room temperature. The structure of **24** was assigned on the basis of characteristic ¹H and ¹³C NMR resonances (Table 5). No metallacyclobutene intermediate was detected even at -53 °C. Apparently, the sterically large Et₃N nucleophile is too large to attack either the C=C-CMe₃ terminal carbon or the central carbon of **3a**.

Rearrangement of Phosphorus-Substituted Metallacyclobutenes. The low-temperature rearrangements of nitrogensubstituted metallacyclobutenes led us to explore possible rearrangements of analogous phosphorus-substituted metallacycles. While these phosphorus analogues were stable enough to isolate as solids at room temperature, slow rearrangement of the sterically congested metallacycle $C_5Me_5(CO)_2ReCH_2C-(PMe_3)=CC(CH_3)_3+BF_4^-$ (4a) occurred over 2 days in CH₂Cl₂ solution to give the alkyne complex $C_5Me_5(CO)_2Re[\eta^2-(CH_3)_3-CC=CCH_2(PMe_3)]+BF_4^-$ (25) in 90% yield (Scheme 8). The assignment of 25 as an alkyne complex was made spectroscopically (Table 5). Slow rotation about the rhenium–alkyne bond was indicated by the observation of two ¹H NMR resonances for the diastereotopic CH₂P hydrogens at δ 3.97 and 3.58 with $J_{gem} = 16$ Hz.

Similarly, the PPh₃-substituted metallacycle $C_5Me_5(CO)_2$ -ReCH₂C(PPh₃)=CC(CH₃)₃+BF₄⁻ (**5a**) rearranged slowly over 2 days at room temperature to the alkyne complex $C_5Me_5(CO)_2$ -Re[η^2 -(CH₃)₃CC=CCH₂(PPh₃)]+BF₄⁻ (**26**) which was isolated Scheme 8

Scheme 9



in 96% yield. The observation of two ¹H NMR resonances for the diastereotopic CH₂P hydrogens at δ 4.03 and 3.71 with J_{gem} = 16 Hz supported the formulation of **26** as an alkyne complex (Table 5).

 $η^3$ -Allyl Complexes from Protonation of Metallacyclobutenes. The thermal instability of the alkynyl-substituted rhenacyclobutene **11b** was traced in part to protonation by acidic media. When isolated, C₅Me₅(CO)₂ReCH₂C[C≡CC-(CH₃)₃]=CCH₃ (**11b**) was treated with excess CF₃CO₂H (5 equiv) in CD₂Cl₂ at room temperature, and the cationic $η^3$ -allyl rhenium complex C₅Me₅(CO)₂Re[$η^3$ -CH₂C[C≡CC(CH₃)₃]-CHCH₃]⁺CF₃CO₂⁻ (**27**) was immediately observed by ¹H and ¹³C NMR spectroscopies (Scheme 9). In the ¹H NMR spectrum, resonances at δ 4.05 (d, J_{gem} = 2.5 Hz) and 1.95 (d, J_{gem} = 2.5 Hz) were assigned to syn and anti hydrogens on the same allylic carbon, and a resonance at δ 2.9 (q, J = 9 Hz) was assigned to an anti allylic hydrogen on a terminal allylic carbon bearing a methyl group. The absence of *W*-coupling expected for syn

⁽²⁴⁾ Reaction of pyridine with the *tert*-butyl-substituted η^3 -propargyl complex **3a** *did not produce products with* NMR resonances consistent with the formation of a metallacyclobutene and/or an alkyne complex analogous to the DMAP complexes **22a** or **23**.

Scheme 10

allylic hydrogens on opposite ends of an allylic system was crucial in assigning a syn orientation of the Me group relative to the C=C(CH₃)₃ group on the central allylic carbon. In the ¹³C NMR spectrum, a carbon resonance at δ 102.8 was assigned to the central allyl carbon and resonances at δ 44.6 and 67.7 were assigned to the unsubstituted and methyl-substituted terminal allyl carbons, respectively. Protonation of metallacycle **11b** with CF₃CO₂D (99%) placed deuterium only on the methyl-substituted allylic carbon of **27**.

When η^3 -propargyl complex **3b** was treated with LiC=CC-(CH₃)₃ followed by H₂O and CF₃CO₂H, the PF₆⁻ salt of the η^3 -allyl complex was isolated in 45% yield.

In a related reaction, addition of LiCu(CH₃)₂ to η^3 -propargyl complex **3b** at -78 °C followed by treatment with wet ether led to the isolation of the η^3 -allyl complex C₅Me₅(CO)₂Re[η^3 -CH₂C(CH₃)CHCH₃]⁺PF₆⁻ (**28**).

 η^3 -Allyl Complexes from Addition of Alcohols to η^3 -Propargyl Complexes. Addition of water or methanol to η^3 propargyl complexes did not produce observable metallacyclobutenes. Instead, oxygen-substituted η^3 -allyl complexes were the first species detected. The formation of these η^3 -allyl complexes can be explained by initial attack of the oxygen nucleophile at the central propargyl carbon to give an oxygensubstituted metallacyclobutene followed by protonation of a Re-C bond of the metallacycle (Scheme 10).

Addition of water to a yellow CH₂Cl₂ solution of the unsubstituted η^3 -propargyl complex **3c** at 0 °C led to isolation of the 2-hydroxyallyl complex C₅Me₅(CO)₂Re[η^3 -H₂CC(OH)-CH₂]⁺BF₄⁻ (**29**) as a red solid in 35% yield. When the reaction was monitored by ¹H NMR spectroscopy in CD₂Cl₂ at -20 °C, **29** was observed immediately and no evidence for a metallacyclobutene intermediate was seen. A higher yield (80%) of **29** was obtained by addition of HBF₄·Et₂O to an acetone solution containing propargyl alcohol complex C₅-Me₅(CO)₂Re(η^2 -HC=CCH₂OH) (**30**)¹³ and 0.1 mL of H₂O. This procedure was designed to generate the unsubstituted η^3 -propargyl complex **3c** in the presence of H₂O as a trapping agent.

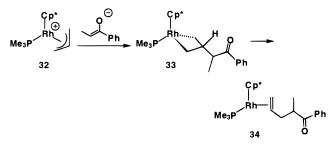
Complex **29** was characterized spectroscopically. The protons on the terminal allyl carbons appeared in the ¹H NMR spectrum as AA'XX' multiplets at δ 4.28 (H_{syn}) and δ 1.89 (H_{anti}) with $J_{\text{gem}} = 4$ Hz, $J_{\text{syn,syn'}} = 4$ Hz, and $J_{\text{anti,anti'}} = 0$ Hz.²⁵ The¹³C NMR spectrum supports the C_s symmetry of **29**: only one carbonyl resonance at δ 195 and one CH₂ resonance at δ 33.3 were observed. η^3 -Allyl complexes are often observed as a mixture of exo and endo isomers.²⁶ The ¹H NMR spectrum of **29** in CD_2Cl_2 showed predominantly one compound (9:1). The major compound was assigned the endo configuration on the basis of the observation of a nuclear Overhauser enhancement (NOE) between the C_5Me_5 protons and the H_{anti} protons of the allyl unit, which are proximal in an endo isomer. Saturation of the C_5Me_5 resonance resulted in a 5% NOE enhancement of the H_{anti} resonance.

To probe the stereochemistry of water addition to η^3 propargyl complex 3c, the reaction was repeated using D₂O in place of water. Reaction of 3c with D₂O in CD₂Cl₂ resulted in the clean formation of $C_5Me_5(CO)_2Re[\eta^3-HDCC(OD)CH_2]^+$ - $\mathrm{BF_4}^-$ (29-d₂) as a red solid in 30% yield (Scheme 10). The chemical shifts of the protons of this complex were very similar to that of the nondeuterated complex 29. The resonance for H_{syn} appeared at δ 4.27 as a broad doublet (J = 4 Hz) that integrated to 1.7 hydrogens vs the 15 hydrogens of the C₅Me₅ ligand. The Hanti resonance was also a broad 4 Hz doublet at δ 1.85. This signal integrated to only 0.9 hydrogens, indicative of the replacement of one of the anti hydrogen atoms by deuterium. These data suggest that the addition of water and D_2O to **3c** occurs stereospecifically to place the additional proton in the anti position of the generated η^3 -allyl complex. The same stereochemistry of addition was observed by Wojcicki for addition of MeOH to $(PPh_3)_2Pt(\eta^3-CH_2C \equiv CCH_3)^+$.^{7e}

Similarly, when the propargyl alcohol complex **3c** was treated with acid in the presence of methanol, the methoxy-substituted η^3 -allyl complex C₅Me₅(CO)₂Re[η^3 -H₂CC(OCH₃)CH₂]⁺BF₄⁻ (**31**) was formed as a red solid in 73% yield. In the ¹H NMR spectrum, AA'XX' multiplets were seen at δ 4.23 for H_{syn} and δ 1.94 for H_{anti}. The endo configuration of the allyl unit was established by the observation of a 15% NOE enhancement of the H_{anti} multiplet upon saturation of the C₅Me₅ resonance.

Discussion

Kinetic Preference for Attack at the Central Carbon of η^3 -Propargyl Rhenium Complexes. Phosphorus, nitrogen, and carbon nucleophiles all attacked the central carbon of η^3 -propargyl rhenium complexes to produce rhenacyclobutene complexes. This reactivity pattern stands in contrast to that of η^3 -allyl complexes, which "normally" undergo nucleophilic attack at a terminal allyl carbon. Density functional molecular orbital calculations on η^3 -propargyl complexes²⁷ support this mode of attack through both charge control and frontier molecular orbital control.


For nitrogen and phosphorus nucleophiles, the initially formed rhenacyclobutene complexes undergo rearrangement to give products resulting from nucleophilic attack at the two different terminal carbons of the propargyl unit. The addition of pyridine to the central carbon of methyl-substituted η^3 -propargyl complex **3b** was found to be reversible. The initially formed metallacyclobutene **14b** reacted with picoline below $-40 \,^{\circ}$ C to form the picoline-substituted metallacyclobutene **16b**, presumably by pyridine dissociation to regenerate η^3 -propargyl complex **3b**. When warmed to room temperature, the metallacyclobutene **14b** was converted to a thermodynamically more stable allene complex **15K**. The higher stability of allene complexes is reasonable on the basis of the strain inherent in the metallacyclobutene structure. The inability of picoline to exchange with

⁽²⁵⁾ The NMR shifts are similar to those observed by Sutton for the endo rotamer of $C_5Me_5(CO)_2Re(\eta^3-CH_2CHCH_2)^+BF_4^-$, whose terminal allyl protons were observed at δ 3.83 (H_{syn}) and δ 1.77 (H_{anti}). (a) Batchelor, R. J.; Einstein, F. W. B.; Zhuang, J.-M.; Sutton, D. J. Organomet. Chem. **1990**, 397, 69. (b) Batchelor, R. J.; Einstein, F. W. B.; He, Y.; Sutton, D. J. Organomet. Chem. **1994**, 468, 183. (c) He, Y.; Batchelor, R. J.; Einstein, F. W. B.; Sutton, D. J. Organomet. Chem. **1996**, 509, 37.

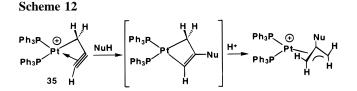
^{(26) (}a) King, R. B. Inorg. Chem. 1966, 5, 2242. (b) Davison, A.; Rode,
W. C. Inorg. Chem. 1967, 6, 2124. (c) Faller, J. W.; Incorvia, M. J. Inorg.
Chem. 1968, 7, 840. (d) Faller, J. W.; Jakubowski, A. J. Organomet. Chem.
1971, 31, C75. (e) Faller, J. W.; Rosan, A. M. J. Am. Chem. Soc. 1976, 98, 3388.

⁽²⁷⁾ Casey, C. P.; Nash, J. R.; Boller, T. M. unpublished results.

Scheme 11

the pyridine bound to allene complex **15K** established the irreversibility of allene complex formation.

The sterically more congested *tert*-butyl-substituted η^3 propargyl complex **3a** was also attacked by nucleophiles at the central propargyl carbon to give metastable metallacyclobutenes. However, the nitrogen- and phosphorus-substituted metallacyclobutenes rearranged to η^2 -alkyne complexes instead of η^2 allene complexes. Apparently, attack at the carbon bearing the bulky *tert*-butyl group is strongly disfavored. Thus, when the allene-forming pathway is blocked, nucleophilic attack can occur at the third propargyl carbon to form a lower energy alkyne structure. Again, the greater stability of alkyne complexes compared with that of metallacyclobutenes can be ascribed to ring strain.


Comparison with η^3 -Allyl Systems. In contrast to the predominate attack of nucleophiles at the central carbon of η^3 -propargyl complexes, the normal mode of attack on nucleophiles is at a terminal carbon of η^3 -allyl complexes.¹ Nevertheless, a growing number of examples of nucleophilic attack at the central allyl carbon have been reported for cationic η^3 -allyl complexes of Mo,²⁸ W,²⁸ Rh,²⁹ and Pt.³⁰ In several rare cases, kinetic attack of nucleophiles at the central allyl carbon produced metallacy-clobutanes that then rearranged to more stable products of net terminal allyl carbon attack. Stryker and co-workers^{31,32} reported that enolate addition to rhodium η^3 -allyl complex **32** initially occurred at the central allyl carbon to give metallacy-clobutane **33** which subsequently rearranged to alkene complex **34**, the product of terminal carbon attack (Scheme 11).

The regioselectivity of nucleophilic addition to η^3 -allyl complexes has been the subject of several theoretical investigations. Davies, Green, and Mingos stressed the importance of *charge control*, and they predicted central-carbon nucleophilic attack on π -allyl complexes with very electron-releasing metal fragments.³³ Curtis and Eisenstein emphasized the role of *frontier orbital control* and pointed out that the energy ordering of the two lowest-lying empty orbitals could affect the regio-chemistry of nucleophilic addition to η^3 -allyl complexes.³⁴

(32) For reversible addition of nucleophiles to a Pt complex, see: (a) Carfagna, C.; Galarini, R.; Linn, K.; López, J. A.; Mealli, C.; Musco, A. Organometallics 1993, 12, 3019. (b) Carfagna, C.; Mariani, L.; Musco, A.; Sallese, G.; Santi, R. J. Org. Chem. 1991, 56, 3924. (c) Carfagna, C.; Galarini, R.; Musco, A.; Santi, R. J. Mol. Catal. 1992, 72, 19. (d) Carfagna, C.; Galarini, R.; Musco, A.; Santi, R. Organometallics 1991, 10, 3956.
(33) Davies, S. G.; Green, M. L. H.; Mingos, D. M. P. Tetrahedron 1978,

(35) Davies, S. G.; Green, M. L. H.; Millgos, D. M. P. *Tetranearon* **1978** 34, 3047.

(34) Curtis, M. D.; Eisenstein, O. Organometallics 1984, 3, 887.

Bäckvall experimentally confirmed that ligand effects could alter the regiochemistry of nucleophilic addition to η^3 -allyl palladium complexes: σ -donor ligands (TMEDA) directed nucleophilic attack toward the central carbon, while π -acceptor ligands (PPh₃) directed attack toward the terminal carbon.³⁵ Their MP2 ab initio calculations confirmed the ligand dependence of the energy ordering of the two lowest-lying empty orbitals. With σ -donor ligands, the LUMO is localized on the central carbon, but with π -acceptor ligands, the LUMO is localized on the terminal carbons.

Access to Metallacyclobutenes. The addition of nucleophiles to the central carbon of cationic η^3 -propargyl rhenium complexes provides a new and efficient way to generate metallacyclobutenes. Other routes to metallacyclobutenes include (1) coupling of alkyne ligands with carbene, ^{15,17,36} CO, ^{37,38} and isonitrile ligands, ³⁹ (2) ring opening of cyclopropenes^{16,40} and cyclopropenones, ^{41,42} and (3) rearrangement reactions involving ring contraction of metallacycles. ⁴³

Addition of Nucleophiles to Other η^3 -Propargyl Systems. While other reported nucleophilic additions to η^3 -propargyl complexes have not resulted in isolable or even observable metallacyclobutenes, the observed η^3 -allyl or η^3 -trimethylenemethane products are consistent with initial kinetic attack at the center carbon of the η^3 -propargyl ligand. Chen reported that the reaction of $(PPh_3)_2Pt(\eta^3-H_2CC \equiv CH)^+BF_4^-$ (35) with a range of nucleophiles generated η^3 -allyl complexes (Scheme 12).⁴⁴ The Wojcicki group found that the substituted η^3 propargyl platinum complex $(PPh_3)_2Pt(\eta^3-H_2CC \equiv CPh)^+$ (and its palladium analog) reacted with nucleophiles to form η^3 -allyl complexes.^{12,45} These products are consistent with nucleophilic addition to the central propargyl carbon to form a transient platinacyclobutene, followed by protonation of the metallacyclobutene to give the observed η^3 -allyl complexes. We observed a similar reactivity pattern in the reactions of water with the unsubstituted propargyl complex 3c which led to the isolation of hydroxy-substituted η^3 -allyl complex 29.

Parallel work in the laboratories of Wojcicki and Chen explored the conversion of η^3 -propargyl platinum complexes

(40) Donovan, B. T.; Egan, J. W., Jr.; Hughes, R. P.; Spara, P. P.; Trujillo,
 H. A.; Rheingold, A. L. *Isr. J. Chem.* **1990**, *30*, 351.

 (42) Song, L.; Arif, A. M.; Stang, P. J. Organometallics 1990, 9, 2792.
 (43) O'Connor, J. M.; Pu, L.; Woolard, S.; Chadha, R. K. J. Am. Chem. Soc. 1990, 112, 6731.

(44) Tsai, F.-Y.; Hsu, R.-H.; Huang, T.-M.; Chen, J.-T.; Lee, G.-H.; Wang, Y. J. Organomet. Chem. 1996, 520, 85.

(45) Some nucleophiles add to the metal center to form σ -allenyl and σ -propargyl complexes. Blosser, P. W.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. *Organometallics* **1993**, *12*, 1993.

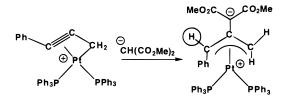
^{(28) (}a) Ephritikhine, M.; Francis, B. R.; Green, M. L. H.; Mackenzie, R. E.; Smith, M. J. *J. Chem. Soc., Dalton Trans.* **1977**, 1131. (b) Ephritikhine, M.; Green, M. L. H.; Mackenzie, R. E. *J. Chem. Soc., Chem. Commun.* **1976**, 619.

 ⁽²⁹⁾ Periana, R. A. Bergman, R. G. J. Am. Chem. Soc. 1984, 106, 7272.
 (30) Benyunes, S. A.; Brandt, L.; Green, M.; Parkins, A. W. Organometallics 1991, 10, 57.

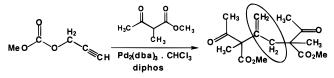
^{(31) (}a) Tjaden, E. B.; Stryker, J. M. J. Am. Chem. Soc. 1990, 112, 6420.
(b) Wakefield, J. B.; Stryker, J. M. J. Am. Chem. Soc. 1991, 113, 7057. (c) Tjaden, E. B.; Stryker, J. M. Organometallics 1992, 11, 16. (d) Tjaden, E. B.; Casty, G. L.; Stryker, J. M. J. Am. Chem. Soc. 1993, 115, 9814.

⁽³⁵⁾ Aranyos, A.; Szabó, K. J.; Castaño, A. M.; Bäckvall, J.-E. Organometallics 1997, 16, 1058.

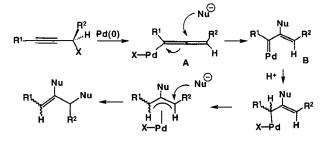
⁽³⁶⁾ O'Connor, J. M.; Ji, H.; Iranpour, M.; Rheingold, A. L. J. Am. Chem. Soc. **1993**, *115*, 1586.


⁽³⁷⁾ Burt, R.; Cooke, M.; Green, M. J. Chem. Soc. A 1970, 2981.

^{(38) (}a) Padolik, L. L.; Gallucci, J.; Wojcicki, A. J. Organomet. Chem. **1990**, 383, C1. (b) Padolik, L. L.; Gallucci, J. C.; Wojcicki, A. J. Am. Chem. Soc. **1993**, 115, 9986.

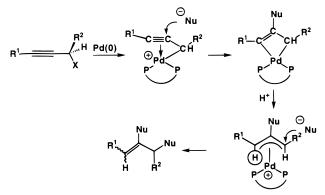

⁽³⁹⁾ Wakatsuki, Y.; Miya, S.-y.; Ikuta, S.; Yamazaki, H. J. Chem. Soc., Chem. Commun. 1985, 35.

^{(41) (}a) Visser, J. P.; Ramakers-Blom, J. E. J. Organomet. Chem. 1972,
44, C63. (b) Wong, W.; Singer, S. J.; Pitts, W. D.; Watkins, S. F.; Baddley,
W. H. J. Chem. Soc., Chem. Commun. 1972, 672.


Scheme 13

Scheme 14

Scheme 15



to η^3 -trimethylenemethane complexes.⁴⁶ The addition of sodium dimethylmalonate to palladium⁴⁷ and platinum⁴⁸ η^3 -propargyl complexes produced η^3 -trimethylenemethane (η^3 -TMM) complexes (Scheme 13).

Comments on the Mechanism of Palladium-Catalyzed Reactions of Propargyl Carbonates. Tsuji and co-workers have developed many useful palladium-catalyzed reactions of propargyl carbonates.³ The reactions of carbon nucleophiles with propargyl carbonates produce double nucleophilic addition products where nucleophiles have added to both the central and a terminal carbon of the propargyl unit (Scheme 14). These reactions are related to the well-studied palladium-catalyzed reaction of allyl carbonates with nucleophiles.⁴⁹

In Tsuji's proposed mechanism (Scheme 15), oxidative addition of the propargyl carbonate produces an η^{1} -allenyl complex (**A**) which is attacked by the first nucleophile at the center allene carbon to produce a palladium carbene complex (**B**) that is then protonated to give a η^{1} -allyl intermediate. Conversion of the η^{1} - to an η^{3} -allyl complex is then followed by addition of a second nucleophile to a terminal allyl carbon. Tsuji has provided convincing evidence for an η^{3} -allyl intermediate in these double nucleophilic additions. However, both the addition of a nucleophile to the central carbon of an η^{1} -allenyl complex (**A**) and the protonation of a Pd carbene complex (**B**) at carbon are unprecedented processes. Chen observed nucleophilic attack on a platinum η^{1} -allenyl complex to occur at the metal;^{7c} the η^{1} -allenyl ligand was found be far less reactive toward nucleophiles than an η^{3} -propargyl ligand.

Scheme 16

In Stille coupling reactions, vinyl palladium intermediates (which are good models for η^1 -allenyl species) react with nucleophiles at the metal center and not at the β -vinyl carbon.⁵⁰

On the basis of the reactivity patterns we have observed for η^3 -propargyl complexes, we propose an alternative mechanism for the double nucleophilic addition (Scheme 16). In our proposed mechanism, oxidative addition of the propargyl carbonate leads to an η^3 -propargyl intermediate. The first nucleophilic addition occurs to the central carbon of the propargyl ligand to produce a metallacyclobutene. This is followed by a precedented protonation of the metallacyclobutene to generate the same η^3 -allyl complex as proposed in Tsuji's mechanism.

Conclusions

A clear picture of the nature of nucleophilic attack on η^3 propargyl complexes is emerging from the results reported by our group and the other groups in this actively researched area. It seems clear that kinetic attack of nucleophiles on the center carbon of the propargyl ligand is almost always favored. After this initial metallacyclobutene-forming attack, subsequent transformations can lead to a variety of products, including η^3 -allyl complexes, η^3 -trimethylenemethane complexes, η^2 -allene complexes, and η^2 -alkyne complexes.

Experimental Section

General. For details, see the Supporting Information. $C_5Me_5(CO)_2$ -Re(η^2 -HC=CCH₂OH), $C_5Me_5(CO)_2Re(\eta^3$ -H₂CC=CH)⁺BF₄⁻, and C_5 -Me₅(CO)₂Re(η^3 -H₂CC=CCH₃)⁺PF₆⁻ were prepared as described earlier.^{13,14}

C₅**Me**₅**(CO)**₂**ReCH**₂**C**(**PMe**₃)=**CC**(**CH**₃)₃+**BF**₄[−] (**4a**). Excess PMe₃ (0.5 mL) was vacuum transferred into a yellow solution of **3a** (60 mg, 0.105 mmol) in CH₂Cl₂ (1 mL) at −78 °C. The mixture was stirred and allowed to warm to 25 °C over 30 min. Volatiles were evaporated under high vacuum to give **4a** (68 mg, 100%) as a light yellow airstable solid. ¹H NMR (CD₂Cl₂, 300 (MHz): δ 1.98 (s, C₅Me₅), 1.88 (d, *J*_{PH} = 13 Hz, PMe₃), 1.52 (d, *J* = 12 Hz, CHH), 1.16 [s, C(CH₃)₃], 0.18 (d, *J* = 12 Hz, CHH). ¹³C{¹H} NMR (CD₂Cl₂, 125 (MHz): δ 212.9 (CO), 212.2 (CO), 178.3 (d, *J*_{PC} = 6 Hz, *C*=CPMe₃), 120.8 (d, *J*_{PC} = 15 Hz, *C*=CPMe₃), 102.8 (*C*₅Me₅), 41.9 [*C*(CH₃)₃], 32.8 [C(CH₃)₃], 12.1 (d, *J*_{PC} = 53 Hz, PMe₃), 10.5 (C₃Me₅), −28.3 (CH₂). IR (THF): 1994 (s), 1914 (s) cm⁻¹. MS (MALDI-TOF) calcd (obsd): for C₂₂H₃₅O₂PRe⁺ (M⁺) 547.19 (547.41), for C₂₁H₃₅OPRe⁺ (M⁺ − CO) 519.20 (519.47), for C₁₉H₂₆O₂Re⁺ (M⁺ − PMe₃) 471.15 (471.41).

X-ray Crystallographic Determination of $C_5Me_5(CO)_2$ -ReCH₂C(PMe₃)=CC(CH₃)₃+BF₄⁻⁻ (4a). Single crystals of 4a suitable

⁽⁴⁶⁾ For related syntheses of η^3 -oxatrimethylenemethane complexes, see: (a) Baize, M. W.; Furilla, J. L.; Wojcicki, A. *Inorg. Chim. Acta* **1994**, 223, 1. (b) Baize, M. W.; Plantevin, V.; Gallucci, J. C.; Wojcicki, A. *Inorg. Chim. Acta* **1995**, 235, 1.

⁽⁴⁷⁾ Su, C.-C.; Chen, J.-T.; Lee, G.-H.; Wang, Y. J. Am. Chem. Soc. 1994, 116, 4999.

⁽⁴⁸⁾ Plantevin, V.; Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. Organometallics 1994, 13, 3651.

^{(49) (}a) Tsuji, J. *Tetrahedron* **1986**, *42*, 4361. (b) Trost, B. M.; Verhoeven, T. R. in *Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 8, p 799.

^{(50) (}a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (b)
Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 4630.
(c) Jeffery-Luong, T.; Linstrumelle, G. Synthesis 1983, 32. (d) Gueugnot,
S.; Linstrumelle, G. Tetrahedron Lett. 1993, 34, 3853. (e) Loar, M. K.;
Stille, J. K. J. Am. Chem. Soc. 1981, 103, 4174.

Table 6.	X-ray Crystal Structure Data for	
C ₅ Me ₅ (CC	$_{2}ReCH_{2}C(PMe_{3}) = CC(CH_{3})_{3}^{+}BF_{4}^{-}$ (4A)	(۱

-51 VIC	$51005(00)_{2}(00)_{2}(01)_{3}(01)_{3}(01)_{4}(01)_{3}(01)_{3}(01)_{4}(01)_{3}(01)_{3}(01)_{4}(01)_{3}(01)_{3}(01)_{4}(01)_{3}(01)_{4$				
	empirical form	$C_{22}H_{35}BF_4O_2PRe$			
C	color; habit	yellow transparent prism			
C	eryst syst	monoclinic			
s	space group	Cc			
υ	init cell dimens	a = 25.6741(2) Å			
		b = 11.9960(3) Å			
		c = 16.6122(3) Å			
		$\beta = 101.218(2)^{\circ}$			
١	vol.	5018.6 Å ³			
I	Peaks to determine cell	8192			
ϵ	f range of cell peaks	3.0 to 25.0°			
2	Z	8			
f	form wt	635.48			
ć	lensity (calcd)	1.682 Mg/m^3			
а	bs coeff	4.952 mm^{-1}			
1	F(000)	2512			
I	$\hat{R}(F)^{a}$	3.16%			
v	$v \hat{\mathbf{R}} (F^2)^a$	7.85%			
	× ,				

^{*a*} *R* factors are defined as follows: $R(F) = \{\sum |F_o - kF_c|\} / \sum |F_o|$ and wR(*F*²) = $(\{\sum w(F_o^2 - F_c^2)^2\} / \sum [w(F_o^2)^2])^{1/2}$.

for X-ray analysis were obtained by slow diffusion of Et₂O into a saturated CH2Cl2 solution of pure compound at room temperature over the course of 3 days. A crystal of 4a was coated in epoxy and mounted on the tip of a thin glass fiber. Diffraction data were obtained with graphite-monochromated Mo Ka radiation on a Siemens P4/CCD diffractometer at 133 K. Intensity data were collected in the range $1.62 \le \theta \le 25^{\circ}$ using ϕ scan frames. Standard reflections for the data set showed a maximum variation of 0.32% throughout acquisition. Systematic absences and statistical analyses were consistent with the space group Cc. The 11 098 reflections collected produced 5029 independent reflections. The initial positions for Re atoms were found by direct methods, and all non-hydrogen atoms were located from successive difference Fourier maps. All non-hydrogen atoms were refined anisotropically; hydrogen atoms were refined from initial idealized positions with a riding model using isotropic displacement parameters of 1.2× isotropic equivalent of the bonded atom. In the riding model, hydrogens are fixed a set distance and geometry from the heavy atom and "ride" the motions of the heavy atom during refinement. A semiempirical absorption correction from ψ -scans was applied to each data set. Crystallographic computations were performed using the SHELXTL-PLUS⁵¹ software on a Silicon Graphics Indigo computer. Crystallographic data is summarized in Table 6.

C₅**Me**₅(**CO**)₂**ReCH**₂**C**(**PMe**₃)=**CCH**₃⁺**PF**₆⁻ (**4b**). Excess PMe₃ (10 equiv) was vacuum transferred into a CH₂Cl₂ solution of **3b** (50 mg, 0.087 mmol). A white precipitate gradually formed over 1 h at room temperature. The precipitate was filtered and washed with Et₂O to give **4b** (41 mg, 72%) as a white powder. ¹H NMR (acetone-*d*₆, 200 MHz): δ 2.36 (q, *J* = 2 Hz, CCH₃), 2.05 (s, C₅Me₅), 1.95 (d, *J*_{PH} = 14 Hz, PMe₃), 1.45 (dqd, *J* = 12, 2 Hz, *J*_{PH} = 0.7 Hz, *CH*H), 0.3 (dq, *J* = 12, 2 Hz, CHH). ¹³C NMR (acetone-*d*₆, 126 MHz): δ 213.5 (s, CO), 207.0 (s, CO), 157.7 (s, =*C*CH₃), 128.0 (d, *J*_{PC} = 33 Hz, *C*PMe₃), 103.3 (s, *C*₅Me₅), 24.8 (q, *J*_{CH} = 130 Hz, =*C*CH₃), 9.9 (q, *J*_{CH} = 128 Hz, C₅Me₅), 9.2 (qd, *J*_{CH} = 133 Hz, *J*_{PC} = 53.0 Hz, PMe₃), −31.7 (t, *J*_{CH} = 145 Hz, ReCH₂). ³¹P{¹H}</sup> NMR (acetone-*d*₆, 202.5 MHz): δ 3.3 (s, PMe₃). IR (acetone): 1991 (s), 1915 (s) cm⁻¹. Anal. Calcd for C₁₉H₂₉O₂ReP₂F₆: C, 35.02; H, 4.49. Found: C, 35.31; H, 4.36.

C₅**Me**₅(**CO**)₂**ReCH**₂**C**[**C**≡**CC**(**CH**₃)₃]=**CCH**₃ (11b). LiC≡CC-(CH₃)₃ (8 mg, 87 µmol) was added to **3b** (50 mg, 87 µmol) in THF at room temperature. After 10 min, solvent was evaporated under high vacuum, and Et₂O was added. The Et₂O solution was filtered and chromatographed (silica gel, 3:1 hexane/Et₂O) to give **11b** (29 mg, 47% yield, >90% pure by ¹H NMR) as a dark orange-red liquid. ¹H NMR (THF-*d*₈, 200 MHz): δ 2.03 (t, *J* = 2 Hz, =**C**CH₃), 1.96 (s, C₅Me₅), 1.37 (dq, *J* = 11, 2 Hz, CHH), 1.19 [s, C(CH₃)₃], 0.20 (dq, *J* = 11, 2 Hz, CHH), 1.19 [s, C(CH₃)₃], 0.20 (CO), 214.2

(CO), 102.4 (C_5Me_5), 150.2 (ReC=C), 128.0 (ReC=C), 92.2 and 83.1 (C=C), 31.9 [$C(CH_3)_3$], 31.2 [$C(CH_3)_3$], 21.1 (= CCH_3), 10.1 (C_5Me_5), -21.7 (CH₂). IR (Et₂O): 1981 (s), 1905 (s) cm⁻¹. HRMS (EI) calcd (obsd) for C₂₂H₂₉O₂Re 512.1728, obsd (512.1731).

C₅Me₅(CO)₂ReCH₂C[CH(CO₂Et)₂]=CCH₃ (12b). Solid NaCH- $(CO_2Et)_2$ (9.5 mg, 52 μ mol) dissolved over 10 min as it reacted with **3b** (30 mg, 52 μ mol) in THF. Solvent was evaporated under high vacuum, and the residue was dissolved in Et₂O. The solution was filtered and evaporated to give 12b (30 mg, 54% yield, >90% pure by ¹H NMR) as a dark orange-red oil. ¹H NMR (C₆D₆, 200 MHz): δ 4.5 [s, $CH(CO_2Et)_2$], 4.0 (m, OCH_2CH_3), 2.1 (t, J = 2 Hz, $=CCH_3$), 2.0 $(dq, J = 11, 2 Hz, CHH), 1.61 (s, C_5Me_5), 1.0 (m, OCH_2CH_3), 0.5$ (dq, J = 11, 2 Hz, CHH). ¹³C NMR (THF- d_8 , 126 MHz): δ 216.9 (s, CO), 214.5 (s, CO), 168.3 (s, CO₂R), 167.4 (s, CO₂R), 140.3 (s, =CCH₃), 119.0 (s, C=CCH₃), 102.1 (s, C₅Me₅), 61.3 (t, $J_{CH} = 149$ Hz, OCH₂), 61.1 (t, $J_{CH} = 144$ Hz, OC'H₂), 59.2 (d, $J_{CH} = 130$ Hz, $CH(CO_2Et)_2$), 18.8 (q, $J_{CH} = 125$ Hz, = CCH_3), 14.4 (q, J = 127 Hz, OCH_2CH_3), 14.2 (q, J = 127 Hz, $OCH_2C'H_3$), 10.1 (q, J = 128 Hz, C_5Me_5 , -25.7 (t, J = 141 Hz, ReCH₂): IR (Et₂O) 1979 (s), 1903 (s), 1736 (m) cm $^{-1}$. HRMS calcd (obsd): for $C_{23}H_{31}O_6Re\ 590.1681$ (590.1681).

C₅**Me**₅(**CO**)₂**ReCH**₂**C**(**NC**₅**H**₅)=**CCH**₃⁺**PF**₆[−] (14b). Pyridine (2 drops, 0.5 mmol) was added to a resealable NMR tube containing a CD₂Cl₂ solution of **3b** (15 mg, 0.09 mmol) frozen in liquid nitrogen. The tube was evacuated, warmed to -78 °C, inverted several times to mix the components, and placed in a pre-cooled NMR probe at -73 °C. ¹H NMR spectra of the bright yellow solution showed the formation of **14b**. ¹H NMR (CD₂Cl₂, -53 °C, 500 (MHz): δ 8.51 (d, *J* = 6 Hz, *o*-C₅H₅N), 8.31 (t, *J* = 8 Hz, *p*-C₅H₅N), 8.02 (t, *J* = 7 Hz, *m*-C₅H₅N), 2.29 (br s, CH₃), 1.97 (s, C₅Me₅), 0.62 (dq, *J* = 12, 2 Hz, =CHH), remaining C=CHH obscured by C₅Me₅.

 $C_5Me_5(CO)_2Re[\eta^2-H_2C=C=C(NC_5H_5)CH_3]^+PF_6^-$ (15K) and $C_5Me_5(CO)_2Re[\eta^2-H_2C=C=C(CH_3)NC_5H_5]^+PF_6^-$ (15T). Complex 3b (50 mg, 0.09 mmol) and pyridine (0.54 mmol) were stirred in 5 mL of CH₂Cl₂ for 15 min. Most of the solvent was evaporated from the bright yellow solution, and 10 mL of Et₂O was added. The resulting yellow precipitate was filtered off, washed with Et₂O, and dried under vacuum to give a 10:1 mixture of **15K/15T** (36 mg, 61%) as a yellow powder. MS (LSIMS) calcd (obsd): for C₂₁H₂₅O₂NRe 510.1 (510.2). Anal. Calcd for C₂₁H₂₅O₂NRePF₆: C, 38.50; H, 3.96. Found: C, 38.20; H, 3.61.

Major Kinetic Isomer 15K. ¹H NMR (CD₂Cl₂, -40 °C, 500 MHz): δ 8.73 (d, J = 6 Hz, o-C₃ H_5 N), 8.39 (t, J = 8 Hz, p-C₅ H_5 N), 8.02 (br t, J = 8 Hz, m-C₃ H_5 N), 2.59 (br s, CH₃), 2.00 (s, C₅Me₅), 1.94 (dq, shoulders not resolved, J = 9, 2 Hz, =CHH), 1.19 (dq, shoulders not resolved, J = 8, 2 Hz, =CHH). ¹³C{¹H} NMR (CD₂-Cl₂, -60 °C, 126 MHz): δ 205.8 (CO), 202.4 (CO), 148.1 (C=C=C), 146.1 (br, p-C₅ H_5 N), 143.4 (br, o-C₅ H_5 N), 132.0 (=C(CH₃)NC₅ H_5), 126.9 (m-C₅ H_5 N), 100.1 (C_5 Me₅), 26.4 (CH₃), 9.7 (C₅ Me_5), -2.5 (=CH₂). ¹³C{¹H} NMR (CD₂Cl₂, 22 °C, 126 MHz): δ 204 (br, CO), 148.9 (C=C=C), 145.8 (p-C₅ H_5 N), 144.4 (o-C₅ H_5 N), 133.3 (=C(CH₃)-NC₅ H_5), 128.5 (m-C₅ H_5 N), 101.7 (C_5 Me₅), 26.9 (CH₃), 10.2 (C₅ Me_5), -1.7 (=CH₂). ¹³C NMR (CD₂Cl₂, 22 °C, 126 MHz): δ 204 (br, CO), 148.8 (s), 145.7 (d, J = 164 Hz), 144.4 (d, J = 176 Hz), 133.2 (s), 128.5 (d, J = 189 Hz), 101.1 (s), 26.9 (q, J = 139 Hz), 10.2 (q, J = 126 Hz), -1.8 (t, J = 164 Hz). IR (THF): 1983 (s), 1911 (s) cm⁻¹.

A solution of **15K** (6 mg, 9.2 μ mol) in CD₂Cl₂ solution slowly equilibrated ($t_{1/2} \approx 14$ d) to a 1:9 mixture of **15K/15T**. After 2 months, evaporation of solvent gave a yellow solid which was washed with ether to give a 1:9 mixture of **15K/15T** (6 mg, 100%).

Minor Kinetic Isomer 15T. ¹H NMR (CD₂Cl₂, 213 K, 500 MHz): δ 8.73 (d, J = 6 Hz, o-C₅H₅N), 8.52 (t, J = 6 Hz, p-C₅H₅N), 8.09 (br t, J = 6 Hz, m-C₅H₅N), 2.73 (br s, CH₃), 1.91 (br d, J = 8 Hz, =CHH), 1.81 (s, C₅Me₅), 1.19 (br d, J = 8 Hz, =CHH). ¹³C{¹H} NMR (CD₂-Cl₂, 213 K, 126 (MHz): δ 203.7 (CO), 203.0 (CO), 153.8 (C=C=C), 144.0 (br, C₅H₅N), 140.8 (br, C₅H₅N), 126.7 (C₅H₅N), 125.7 (=C(CH₃)NC₅H₅), 100.1 (C₅Me₅), 19.9 (CH₃), 9.9 (C₅Me₅), -2.9 (=CH₂). IR (THF): 1997 (s), 1914 (s) cm⁻¹.

Reaction of $C_5Me_5(CO)_2ReCH_2C(NC_5H_5)=CCH_3^+PF_6^-$ (14b) with 4-Picoline. A CD₂Cl₂ solution of 14b was prepared from pyridine (7 μ L, 9 μ mol) and 3b (15 mg, 2.6 μ mol) at -78 °C in a resealable

⁽⁵¹⁾ Sheldrick, G. M. SHELXTL Version 5 Reference Manual, 1994; Siemens Analytical X-ray Instruments, 6300 Enterprise Dr., Madison, WI 53719-1173.

NMR tube. ¹H NMR spectra at -30 °C showed formation of **14b** along with excess pyridine. 4-Picoline (30 μ L, 310 μ mol) was added to the solution at -78 °C. ¹H NMR spectra at -40 °C showed complete formation of C₅Me₅(CO)₂ReCH₂C(NC₅H₄-*p*-CH₃)=CCH₃+PF₆⁻ (**16b**) along with excess pyridine and 4-picoline. **16b**. ¹H NMR (CD₂Cl₂, -40 °C, 500 MHz): δ 8.39 (d, J = 6 Hz, o-C₅H₄N), 7.79 (d, J = 6 Hz, m-C₅H₄N), 2.58 (s, CH₃), 1.98 (s, C₅Me₅), 0.61 (br d, J = 13 Hz, CHH), CH₃ and CHH resonances buried under excess 4-picoline and C₅Me₅ resonances.

At 9 °C, new resonances for $C_5Me_5(CO)_2Re[\eta^2-H_2C=C=C-(CH_3)(NC_5H_4-p-CH_3)]^+PF_6^-$ (**17**) grew in slowly. After 8 h at room temperature, volatile materials were evaporated under vacuum and fresh CD₂Cl₂ was added. ¹H NMR showed a complex mixture of η^2 -allenyl adducts from both pyridine and 4-picoline. For **17**. (CD₂Cl₂, 300 MHz): δ 8.58 (d, J = 7 Hz, o-C₅H₄N), 7.82 (d, J = 7 Hz, m-C₅H₄N), 2.68 (s, CH₃), 2.59 (s, CH₃), 2.05 (s, C₅Me₅), 1.5 (br, =CH₂).

 $C_5Me_5(CO)_2Re[\eta^2-H_2C=C=C(NEt_3)CH_3]^+PF_6^-$ (19). Addition of NEt₃ (20 mg, 170 μ mol) to C₅Me₅(CO)₂Re(η^3 -CH₂C=CCH₃)⁺PF₆⁻ (55 mg, 9.6 µmol) in CD₂Cl₂ produced a bright yellow solution. Volatile materials were evaporated under vacuum, and the resulting dark yellow solid was washed with Et2O and dried under vacuum to give $C_5Me_5(CO)_2Re[\eta^2-H_2C=C=C(NEt_3)CH_3]^+PF_6^-$ (19) (14 mg, 60%) as a yellow powder. ¹H NMR (CD₂Cl₂, 24 °C, 500 MHz): δ 3.53 (q, J = 8 Hz, NCH₂CH₃), 2.32 (t, J = 2 Hz, CH₃), 2.04 (s, C₅Me₅), 1.23 (t, J = 8 Hz, NCH₂CH₃), =CH₂ resonances broadened by allene rotation. The CH₂= resonances decoalesced at -47 °C. ¹H NMR (CD₂Cl₂, -47 °C, 500 MHz): δ 3.4 (br, NCH2CH3), 2.23 (br s, CH3), 2.16 (br d, $J_{\text{gem}} = 9 \text{ Hz}, = CHH), 1.96 \text{ (s, } C_5Me_5), 1.44 \text{ (br d, } J_{\text{gem}} = 9 \text{ Hz}, = CHH),$ 1.25 (br, NCH₂CH₃). ¹H NMR (CD₂Cl₂, -80 °C, 500 MHz): additional resonances observed for decoalesced Et groups at δ 3.65 (br, 1H), 3.52 (br, 1H), 3.41 (br, 1H), 3.29 (br, 2H), 3.21 (br, 1H), 1.27 (br t, J = 6Hz, 3H), 1.11 (br t, J = 7 Hz, 3H), 0.92 (br t, J = 5 Hz, 3H). ¹³C{¹H} NMR (CD₂Cl₂, 126 (MHz): δ 203.4 (CO), 147.0 (C=C=C), 123.0 $(=C(CH_3)NEt_3)$, 101.1 (C_5Me_5), 53.2 (NCH_2CH_3), 18.9 ($=C(CH_3)$ -NEt₃), 10.5 (C₅Me₅), 8.4 (NCH₂CH₃), 3.4 (=CH₂). IR (THF): 1979 (s), 1909 (s) cm⁻¹. MS (LSIMS) calcd (obsd): for C₂₂H₃₅O₂NRe⁺ 532.2 (532.2). Anal. Calcd for C₂₂H₃₅O₂NRePF₆: C, 39.05; H, 5.21. Found: C, 39.22; H, 5.17.

C₅**Me**₅(**CO**)₂**Re**CH₂**C**(**NC**₅H₄**NMe**₂)=**CC**(**CH**₃)₃⁺**B**F₄[−] (**22a**). 4-(Dimethylamino)pyridine (DMAP, 5 mg, 0.040 mmol) was added to a yellow solution of **3a** (20 mg, 0.035 mmol) in CD₂Cl₂ (1 mL) in a resealable NMR tube at −78 °C. The tube was inverted to mix the reactants and immediately inserted into a pre-cooled NMR probe at −38 °C. Complex **22a** was the only product observed by ¹H NMR spectroscopy. Rearrangement to **23** occurred at −20 °C. ¹H NMR (CD₂Cl₂, 360 MHz, −38 °C): δ 7.74 (d, *J* = 7 Hz, CHN), 6.77 (d, *J* = 7 Hz, CHCHN), 3.20 (s, NMe₂), 1.99 (s, C₅Me₅), 1.80 (d, *J*_{gem} = 12 Hz, CHH), 0.91 [s, C(CH₃)₃], 0.34 (d, *J*_{gem} = 12 Hz, CHH). ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz, −38 °C): δ 214.2, 213.6 (CO); 140.9 (C=CDMAP); 155.6, 136.9, 130.4 (DMAP aromatic carbons); 105.6 (*C*=CDMAP), 101.8 (*C*₅Me₅), 40.3 (NMe₂), 37.5 [*C*(CH₃)₃], 32.0 [C(*C*H₃)₃], 10.2 (C₅Me₅), −17.7 (CH₂).

C₅**H**₅**(CO)**₂**Re**[η^2 -(**CH**₃)₃**CC**≡**CCH**₂(**NC**₅**H**₄**NMe**₂)]⁺**BF**₄⁻ (23). A yellow solution of DMAP (10 mg, 38 μmol) and **3a** (17 mg, 35 μmol) in CH₂Cl₂ (5 mL) was stirred at room temperature for 15 min. Volatiles were evaporated under high vacuum, and the resulting yellow residue was washed with 10 mL of diethyl ether to give **23** (25 mg, 96%) as a yellow solid. ¹H NMR (CD₂Cl₂, 300 MHz): δ 7.87 (d, *J* = 7 Hz, NCH), 6.85 (d, *J* = 7 Hz, NCCH), 5.45 (d, *J*_{gem} = 16 Hz, CHH), 5.09 (d, *J*_{gem} = 16 Hz, CHH), 3.22 (s, NMe₂), 2.02 (s, C₅Me₅), 1.18 [s, C(CH₃)₃]. ¹³C{¹H} NMR (CD₂Cl₂, 90 (MHz): δ 209.6, 208.3 (CO); 147.7, 141.2, 141.0 (DMAP aromatic carbons); 101.3 (*C*≡C), 101.1 (*C*₅Me₅), 71.6 (C≡*C*), 66.0 (CH₂), 40.5 (NMe₂), 33.9 [*C*(CH₃)₃], 31.7 [C(CH₃)₃], 10.7 (C₅*Me*₅). IR (THF): 1950 (s), 1867 (s) cm⁻¹. MS (MALDI-TOF) calcd (obsd): for C₂₆H₃₆O₂N₂Re⁺ (M⁺) 593.23 (593.30), for M⁺ − CO 565.24 (565.31), for M⁺ − DMAP 471.15 (471.29).

C₅Me₅(CO)₂Re[η^2 -(CH₃)₃CC=CCH₂(PMe₃)]⁺BF₄⁻ (25). A CH₂-Cl₂ solution of 4a (50 mg, 0.077 mmol) was stirred at room temperature for 2 days. Volatiles were evaporated under high vacuum, and the yellow residue was washed with 10 mL of diethyl ether to give 25 (45 mg, 90%) as a yellow solid. ¹H NMR (CD₂Cl₂, 360 MHz): δ 3.97 (dd, $J_{gem} = 16$ Hz, $J_{PH} = 19$ Hz, CHHP), 3.58 (dd, $J_{gem} = 16$ Hz, $J_{PH} = 15$ Hz, CHHP), 2.01 (s, C_5Me_5), 1.92 (d, $J_{PH} = 15$ Hz, PMe_3), 1.30 (s, $C(CH_3)_3$). ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz): δ 205.9 (CO), 204.8 (CO), 97.0 ($C \equiv CCH_2$), 100.9 (C_5Me_5), 57.8 (d, $J_{PC} = 12$ Hz, $C \equiv CCH_2$), 32.8 [$C(CH_3)_3$], 30.7 [$C(CH_3)_3$], 25.2 (d, $J_{PC} = 51$ Hz, CH_2P), 10.4 (C_5Me_5). IR (THF): 1951 (s), 1869 (s) cm⁻¹. MS (MALDI-TOF) calcd (obsd): for $C_{22}H_{35}O_2PRe^+$ (M⁺) 547.19 (547.38).

C₅**Me**₅**(CO)**₂**Re**{ η^3 -**CH**₂**C**[**C**≡**CC**(**CH**₃)₃]**CHCH**₃}⁺**PF**₆⁻(27). H₂O (2 equiv) was vacuum transferred into a THF solution of **3b** (50 mg, 87 μmol). After 10 min at 25 °C, excess CF₃CO₂H (10 equiv) was added, and volatile materials were evaporated under vacuum. The residue was washed with wet Et₂O and filtered to give **27** (26 mg, 45%) as a pale-brown solid. ¹H NMR (acetone-*d*₆, 200 MHz): δ 4.07 (d, *J*_{gem} = 3 Hz, CHH), 2.90 (q, *J* = 9.0 Hz, CHCH₃), 2.27 (s, C₅Me₅), 2.11 (d, *J* = 9 Hz, CHCH₃), 1.95 (br d, *J*_{gem} = 3 Hz, CHH), 1.24 [s, C(CH₃)₃]. ¹³C{¹H} NMR (acetone-*d*₆, 126 MHz): δ 195.0, 193.1 (CO); 104.9 (*C*₅Me₅) 102.8 (CH₂C) 90.6, 73.2 (C≡C) 67.7 (CHCH₃) 44.6 (CH₂) 31.1 [C(CH₃)₃], 16.9 (CHCH₃) 10.1 (C₅Me₅). IR (acetone): 2045 (s), 1990 (s) cm⁻¹.

C₅**Me**₅**(CO)**₂**Re**[η³-**H**₂**CC**(**OH**)**CH**₂]⁺**BF**₄⁻ (29). Addition of HBF₄· Et₂O (10 μL, 85%) to a yellow solution of C₅Me₅(CO)₂Re(η²-HC=CCH₂OH) (25 mg, 58 μmol) and distilled water (0.1 mL) in acetone (2 mL) produced an orange-red solution. The red precipitate which formed upon addition of Et₂O (15 mL) was separated, washed twice with 10 mL of Et₂O, and dried under vacuum to give **29** (20 mg, 80%) as a red air-stable powder as a 9:1 ratio of endo and exo isomers. ¹H NMR (CD₂Cl₂, 300 MHz): endo isomer: δ 8.35 (br s, OH), 4.28 (*AA'XX'*, *J*_{AX} = 4 Hz, *J*_{XX} = 4 Hz, H_{syn}),⁵² 2.09 (s, C₅Me₅), 1.89 (AA'XX', *J*_{AX} = 4 Hz, *J*_{XX} = 4 Hz, H_{anti}). ¹H NMR (CD₂Cl₂, 300 MHz) exo isomer: δ 8.35 (br s, OH), 4.07 (m, H_{syn}), 2.05 (s, C₅Me₅), 1.68 (m, H_{anti}). ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz): δ 195.0 (CO), 134.0 (COH), 104.2 (*C*₅Me₅), 33.3 (CH₂), 10.4 (*C*₅Me₅). IR (CH₂Cl₂): 2045 (s), 1986 (s) cm⁻¹. MS (MALDI-TOF) calcd (obsd): for C₁₅H₂₀O₃-Re⁺ 433.09 (433.23).

Reaction of 3c with D₂O. HBF₄·Et₂O (10 μ L, 85%) was added to a yellow solution of **30** (20 mg, 46 μ mol) in CD₂Cl₂ (1 mL) at room temperature to generate **3c**. D₂O (0.1 mL, excess) was immediately added to the resulting orange solution, which reddened upon mixing. Et₂O (5 mL) was added to precipitate C₅Me₅(CO)₂Re[η^3 -HDCC-(OD)CH₂]⁺BF₄⁻ (**29-d**₂) as a red solid (7 mg, 30%). ¹H NMR (CD₂-Cl₂, 300 MHz): δ 4.27 (br d, J = 4 Hz, 1.7 H, H_{syn}), 2.05 (s, 15 H, C₅Me₅), 1.85 (br d, J = 4 Hz, 0.9 H, H_{anti}).

Acknowledgment. Financial support from the National Science Foundation is gratefully acknowledged.

Supporting Information Available: General experimental methods and experimental details and characterization for C₅-Me₅(CO)₂Re[η^2 -(CH₃)₃CC=CCH₂OH], **3a**, **4c**, **5a**, **5b**, **5c**, **10b**, **13b**, **18c**, **20**, **21**, **24**, **26**, **28**, and **31** and X-ray crystallographic data for **4a** (19 pages). An X-ray crystallographic file, in CIF format, is available through the Internet only. See any current masthead page for ordering and Internet access instructions.

JA9729847

⁽⁵²⁾ The AA'XX' pattern was modeled using the program WinDNMR (v.1.4 Reich, H. J. J. Chem. Educ. Software, 1996) and is consistent with $J_{AA'} = 0$ Hz, $J_{AX} = 4$ Hz, and $J_{XX'} = 4$ Hz, where "A"is H_{syn} and "X"is H_{anti}. Coupling constants between remote η^3 -allyl protons are generally small.²⁶ and the assignment of the H_{syn}-H_{syn} coupling as larger than the H_{anti}-H_{anti} coupling is consistent with the "W" relative geometry of the syn protons, which is more favorable for the transmission of coupling information.